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Abstract 
A procedure involving projection from six- 
dimensional to three-dimensional space to describe 
objects that give sharp diffraction with fivefold sym- 
metry can be reduced to the easier problem of projec- 
tion from two dimensions to one dimension. This 
result is used to derive an explicit formula for the 
quasilattice contribution to the diffracted intensity for 
an arbitrary size and shape of the selection region. 
The predictions of this formula are compared with 
the electron diffraction patterns obtained from rapidly 
solidified aluminium-manganese alloys, and it is con- 
cluded that the edges of the rhombic faces of the 
three-dimensional objects from which models for 
these alloy structures may be constructed is larger 
than that used in previous analyses by a factor of z 3, 
where r is the golden mean. It is shown that the 
quasilattice density is proportional to the volume of 
the selection region in the complementary three- 
dimensional space into which a lattice point in six- 
dimensional space must project in order for the point 
to be included in the direct space; this results in 
important constraints on the possible structures of 
these alloys. 

Introduction 
The recent discovery by Shechtman, Blech, Gratias 
& Cahn (1984) of electron diffraction patterns with 
icosahedral symmetry that have sharp spots has 
stimulated a new study of the conditions under which 
such diffraction patterns may exist. Sharp diffraction 
has traditionally been associated with periodic lat- 

tices, and it has long been known that fivefold rotation 
symmetry is incompatible with an infinite translation 
lattice. It has been shown, however (Levine & Stein- 
hardt, 1984), that sharp diffraction does occur from 
non-periodic patterns under some conditions. 
Moreover, as was first shown by Penrose (1974; also 
Mackay, 1976; Gardner, 1977), patterns with fivefold 
symmetry can be produced that have long-range order 
although they lack periodicity. The two-dimensional 
Penrose tilings have been generalized to three 
dimensions by Mackay (1981, 1982). [In fact, 
Mackay's results were anticipated by Baer (1970), 
who used the principles to construct a number of 
interesting architectural structures.] Kramer & Ned 
(1984), Duneau & Katz (1985) and Kalugin, Kitayev 
& Levitov (1985) have shown that the three- 
dimensional tilings can be understood in terms of 
projection from six dimensions, in which fivefold 
rotation is compatible with periodicity, into three 
dimensions. 

Regardless of whether the alloy of aluminium and 
manganese that was studied by Shechtman et al. 
(1984) is actually an example of a three-dimensional 
object that has an inherent icosahedral diffraction 
pattern, the mathematical development of the diffrac- 
tion properties of these tilings stands by itself, 
independent of its applications to any experimental 
observations. As in periodic crystals, the intensity of 
a diffraction spot for the 'quasicrystal' (Mackay, 1981) 
with fivefold symmetry is proportional to the product 
of two factors, one due to the projected lattice and 
one due to the arrangement of atoms associated with 
each point. In contrast to crystals, however, the spots 
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in the diffraction patterns of quasicrystals correspond 
to points in reciprocal space that have different 
weights, and the structure cannot be reproduced by 
the repeat of a single unit. The purpose of this paper 
is to present a simple formula for the weights of the 
reciprocal quasilattice points and to discuss condi- 
tions that must be satisfied by possible structures. 
Because the previous mathematical development is 
extremely fragmented, it is necessary to begin with a 
brief review of the results we shall use. 

The golden mean and Fibonacci numbers 

We shall first summarize some mathematical relations 
that are associated with fivefold symmetry. The 
Fibonacci numbers may be defined by F,,= 
[r"-(-1/r)"]/v~,  where r = 2  cos (7r/5) = 
(1 + x/5)/2. It is readily verified from this formula that 
Fo = 0, F1 = 1 and F.+~ = F. + F._~, from wlaich it 
follows that the Fibonacci numbers form a sequence 
of integers each of which is the sum of the two that 
precede it in the sequence, r is known as the 'golden 
mean' and is the positive root of the quadratic 
equation x 2 - x - 1 = 0. Because F._~ = F.+I - F,,, the 
Fibonacci numbers are defined for negative as well 
as positive values of n, and it is also readily verified 
from the definition that r"= F._~+F.r, and that 
lim._.oo F.+1/F. = r. Particularly important relations 
are r 2 = r + l  and 1 / r = r - l .  

The Fourier transform of a one-dimensional 
non-periodic sequence 

Levine & Steinhardt (1984) showed that a particular 
one-dimensional non-periodic sequence would show 
sharp diffraction. If one uses the properties of the 
Fibonacci numbers, the fact that such a sequence 
gives sharp diffraction may be shown as follows: 

Consider an array of points along a line such that 
the displacement of the nth point from the origin is 
given by 

x .=n+tn / r J ( r -1 ) ,  (1) 

where [yJ designates 'the largest integer less than or 
equal to y' .  This defines a sequence of segments of 
length either 1 or r. There are never two consecutive 
segments with length 1, there may be either one or 
two segments with length r, and over a long range 
the ratio of the number of segments with length 1 to 
the number of segments with length r approaches 
l : r .  This sequence will have a weighted average 
spacing equal to ( l+r2 ) / ( l+r )=l+l / r2=3-r .  
Defining a set of periods 

am=(1 + llr2)lr ~, (2) 

thereby defining a set of one-dimensional lattices L,,,, 
and defining a deviation of x. from a point in L.,, 

we can show that A,,,, is bounded and can be made 
arbitrarily small. First we multiply both sides of (3) 
by r" ,  giving 

r"Am.=(nFm+l+ [n/rJFm)ao-x.r", (4) 

which, upon substitution for x. [(1)] and use of 
1/r = r -  1, can be written 

rmam. = n(Fm+l-rm)+(n/r)(r- 1)F,.+, 

+ [n/rJ(F~ + Fm/r2-rm-1). (5) 

With the expression for r "  in terms of the Fibonacci 
numbers, straightforward algebraic manipulation 
yields F~+~-rm=-Fm/r, and Fr.+Fm/r2-r =-1= 
Fm+2-F~+~r. If we denote the quantity (n / r ) -  
[n/r], the 'fractional part of (n/r)', by {n/r}, it 
follows that 

rmam.{n/ r}( F,.+, r -  F,. +2), (6) 

which can also be written 

r"Am.=(-1)"{n/r}/r m+'. (7) 

Therefore 

Am. = ( - 1 ) r e { n / ~ } / 2 m + ,  (8) 

{n/r}, by definition, lies in the range O<-{n/r}< 1, 
and, because r is irrational, {n/r} is uniformly dis- 
tributed in this range as n takes all values from -oo 
to +oo. Thus, with respect to any period of the form 
a,. the point at x,, lies within a bounded region 
attached to some point in L,., and the ensemble 
average of A.,. for a large number of points x. fills 
that bounded region uniformly. Furthermore, 
l i m , . _ , o o  Amn/am = 0, SO that the points x. get closer 
and closer to fitting a periodic lattice. 

Just as in a crystal in which the atoms undergo 
thermal vibrations, the array of points x. may be 
replaced, for the purpose of computing the diffraction 
pattern, by the ensemble average contents of a unit 
cell of length a,., except that the distribution is uni- 
form, rather than Gaussian. The diffraction pattern 
is then given by the Fourier transform of the convo- 
lution of a uniform distribution whose range is the 
maximum value of A.,.[ with a translation lattice of 
period a,.. The translation lattice leads to a Fourier 
transform with/5-function peaks at points i/am, where 
I is an integer. The Fourier transform of the uniform 
distribution is 

+ "n'! 

dP(q,t)=(1/27rt) ~ exp(iqu)du 
- -  7 r t  

+ 7 r t  

=(1/27rt)  J cos(qu) du, (9) 
--71"1' 

where t = 1 / r  2''+~. The integral gives 

A,,,,=(nF,,,+,+[n/rJF,,,)a,,,-x,, (3) ~(q,t)=sin(crqt)/(1rqt), (10) 
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and the diffracted intensity, which is proportional to 
the square of the Fourier transform, is given by 

I ( q , t ) = 8 ( q - l / a m ) s i n 2 ( w q t ) / ( w q t )  2. (11) 

Because am is irrational the 8 functions fill the 
one-dimensional space densely, but for any finite 
positive number e there is a finite number of points 
in any finite interval for which I ( q ) >  e. Therefore 
for any detection system where there is a discrete 
minimum of detectable intensity, the diffraction pat- 
tern will consist of sharp spots. Fig. 1 shows the 
features of this function as a function of q. For each 
value of l there is a sigmoid envelope that encloses 
sharp peaks at successive powers of ~', corresponding 
to increasing values of m. 

Levine & Steinhardt (1984) actually showed that 
8-function diffraction peaks would occur for all 
reciprocal-space points of the form m + re'z, not just 
those that can be expressed as an integral multiple 
of a power of ~', for which m and m' are multiples 
of successive Fibonacci numbers. We shall see in a 
later section, however, that almost all spots with 
appreciable intensity fall in this special class. 

Projection from two dimensions to one 

The result derived algebraically in the previous sec- 
tion can also be derived geometrically (Zia & Dallas, 
1985) by means of an irrational projection from two 
dimensions into one dimension. Referring to Fig. 2, 
consider a square lattice with a unit cell whose edge 
length is (1 + ~.2)1/2 and a band through it with width 
w at an angle with the cell edge of arctan (1/~'). If a 
lattice point lies within the band, that is if its projec- 
tion on a line perpendicular to the band is less than 
w, it is projected onto the line marking the lower edge 
of the band. Because the projectiofi line is an irra- 

tional direction in the square lattice, the pattern of 
projected points will never repeat. Nevertheless, any 
family of parallel lines with rational indices will inter- 
sect the projection line at a set of points that form a 
periodic one-dimensional lattice, and the projected 
points will always lie between the intersections of 
those lines with the two edges of the band. The 
Fibonacci sequence considered by Levine & Stein- 
hardt (1984) corresponds to w=l+~- ,  and Fig. 2 
shows the construction with this width and the lines 
whose indices are (1, 1) which corresponds to l = 1 
and m = 0. The projected points never lie within the 
hatched region, but they may lie anywhere within the 
unhatched region. 

If w = 1 + ~" all intervals in the projection will have 
length either 1 or ~', but if w is slightly larger than 
1 + z there will be an occasional short interval of 
length z - 1 .  Similarly, if w is slightly smaller than 
1 + z there will be an occasional long interval with 
length ~'+ 1. It is apparent that the average density 
of points over a long range in the one-dimensional 
space is proportional to w. 

Because the lattice is square, its reciprocal lattice 
is also square. Designating the reciprocal-lattice coor- 
dinates by h and h' and the projections of the 
reciprocal-lattice points on the horizontal and vertical 
lines by rx and ry, we get the relations rx = h + h'~" 
and ry = h ' - h z .  The  thickness of the region within 
which the projected lattice points must fall is t = 
(ry/r, ,)w, and the period is d = 1/rx. The  diffracted 
intensity is proportional to sin 2 (~rt /d) / (wt/d)2 or 
sin 2 (wryw)/(wryW) 2. In order for the relative intensity 
to be greater than (3¢r/2) -2, the first subsidiary 
maximum of the sin x / x  function, ryw, must be less 
than 1. In order for the density of the array of points 
to be positive, w must be a constant greater than 0, 
so that ry should be as small as possible for large 
intensities. Because limm_,oo Fro+l~ Fm -- "r, particularly 
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Fig. 1. Relative intensities for a one-dimensional non-periodic 
sequence of  scattering centers. The indices (I, m), as in equation 
(11), are shown. 

~c,r~°(i / , I  ,,) . 
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l 

Fig. 2. Projection of  a band in a two-dimensional square lattice, 
showing periodicity in a non-periodic sequence. 
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small values of ry occur when h and h' are successive 
Fibonacci numbers, so that the values of r~, are pro- 
portional to powers of ~', in agreement with the alge- 
braic result. The geometric model, however, makes it 
clear how to allow for arbitrary values of w, which 
becomes important when we come to consider the 
three-dimensional problem. 

The relation of  structure to Penrose tiles 

It is well known that fivefold rotation symmetry is 
incompatible with long-range periodicity. However, 
Penrose (1974) showed that with a combination of 
two suitably chosen shapes it was possible to tile a 
plane surface in such a way that there was complete 
long-range order, in the sense that the position of 
every vertex could be specified by a simple direct 
algorithm over an infinite range and fivefold sym- 
metry about a single point in the pattern. Fig. 3 is an 
example of such a pattern in which the shapes are 
two rhombuses with acute angles of 36 and 72 ° . Gard- 
ner (1977) has described a number of interesting 
properties of this pattern. Although there can be 
fivefold symmetry that has infinite extent about one 
point only, finite-sized fivefold patterns of arbitrarily 
large size can be found around an infinite number of 
points. The ratio of the areas of the two rhombuses 
is l : r ,  and the average number density is also ~" of 
the large ones to one of the smaller ones, so that the 
area enclosed, like the line segments in the one- 
dimensional pattern, is in the ratio 1:~ -2. From the 
point of view of the diffraction properties an impor- 
tant feature of this pattern is that the vertices of the 
rhombus-shaped tiles lie on families of parallel lines 
with spacings in the ratio 1:~" in a non-periodic 
sequence that resembles the sequence that we have 
considered in previous sections. It has been shown 
(de Bruijn, 1981; Kramer & Neri, 1984) that a three- 
dimensional structure whose projection onto two 

Fig. 3. A two-dimensional Penrose tiling with fivefold symmetry. 
The tiling has long-range order, but no periodicity. 

dimensions resembled the Penrose tiles would have 
a diffraction pattern with five- or tenfold symmetry 
and a pattern of spacings and intensities similar to 
that shown in Fig. 1. 

One way to construct such an object is with fight 
prisms having the shapes of the tiles stacked periodi- 
cally in the third dimension. One of the phases found 
in the rapidly solidified Mn-A1 alloy appears to have 
just such a structure (Bendersky, 1985). The electron 
diffraction patterns observed by Shechtman et al. 
(1984), however, have icosahedral symmetry, so they 
cannot be due to an object that is periodic in any 
direction. We shall now discuss how an object with 
that sort of diffraction pattern can be constructed. 

Projection from six dimensions to three 

Although icosahedral symmetry is incompatible with 
periodicity in three dimensions, it is easy to construct 
a representation of the icosahedral group, m35, that 
leaves a six-dimensional orthogonal isometric lattice, 
a 'hypercubic'  lattice, invariant. This six-dimensional 
space may be projected into three-dimensional space 
so as to preserve the icosahedral symmetry in two 
ways, corresponding to the top three and bottom three 
rows of the matrix 

Of 

OfT 

0 
P =  

OfT 

--  Og 

0 

0 OIT - -of  

Of 0 OfT 

OfT Of 0 

0 - -o f  --OfT 

OfT 0 --Ol 

- a  a z  0 

0 OfT 

--of 0 

OfT --Of 

0 --Of 

--OFT 0 

--Of --OfT 

where a = (1 + ,/.2)-1/2. This matrix has a number of 
important properties. All rows and all columns are 
orthogonal. In addition the upper half of each column 
is orthogonal to the lower half, and each half of a 
row in the upper half is orthogonal to the same half 
of the corresponding row in the lower half. A unit 
vector along a coordinate axis in six dimensions pro- 
jects to a unit vector normal to a face of the regular 
dodecahedron in each of the three-dimensional 
spaces. [This differs from the matrix defined by Cahn, 
Shechtman & Gratias (1986) in that their matrix trans- 
forms a unit vector along a coordinate axis in six 
dimensions into a vector of magnitude l /v/2 in the 
three-dimensional spaces. There are also some per- 
mutations of rows and columns, but these are 
immaterial.] 

The analogue for the projection from six 
dimensions to three of the finite-width band in the 
case of projection from two dimensions to one is the 
projection of a point from the six-dimensional space 
into the complementary three-dimensional space 
defined by the lower half of the matrix and the deter- 
mination of whether this point is or is not within 
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some finite-sized region. Points that project within 
that region are then projected from six-dimensional 
space into the direct three-dimensional space using 
the top half of the matrix. The exact size and shape 
of the appropriate region used to define the band 
present problems that are discussed below, but, as in 
the two-to-one case, the density of the resulting 
'quasilattice' is proportional to the volume of the 
selection region, which conveys additional informa- 
tion. Fig. 4 shows a portion of a three-dimensional 
array of points generated by this procedure projected 
into two dimensions along a fivefold axis. Like the 
vertices of the Penrose tiles, the points in this pattern 
lie on families of parallel lines, the projections of 
parallel planes, with spacings in the ratio of 1 to ~-. 

Because the six-dimensional lattice is hypercubic, 
its reciprocal lattice is also hypercubic, and it projects, 
again using the upper and lower halves of matrix P, 
into two mutually orthogonal three-dimensional 
reciprocal lattices. A vector h of magnitude 1 / d  in 
the direct reciprocal space will be perpendicular to 
a family of planes in direct real space with corre- 
sponding average spacing d. Because exp (2~rih. r) 
has  constant values on these planes, the diffracted 
intensity depends only on the projection of the planes 
onto the reciprocal-lattice vector, and the Fourier 
transform of the three-dimensional quasilattice can 
be reduced directly to the two-to-one dimensional 
problem, as may be seen as follows: 

An infinite set of six-dimensional reciprocal-lattice 
points will project onto the same radial line in each 
of the three-dimensional spaces. Because the spaces 
are mutually orthogonal, unit vectors along these lines 
form an orthonormal basis for a two-dimensional 
section through the six-dimensional space, and, in 
general, points that lie in this plane may be represen- 
ted by linear combinations, with integral coefficients, 

• Q • • 

• • e  • •  • • 

• • • • • 0  • 

Q • • • 

• • Q • • • • 

• • • • • q 

g 

• • • 0 o  % • • • • 

Fig. 4. A region of a three-dimensional projection of a 'band' in 
six-dimensional space, projected in turn into two dimensions 
along a fivefold axis. Families of parallel planes with quasi- 
periodic spacing are apparent. 

of only two independent integers. For example, 
all points with indices of the form 
(ml ,0 ,  m E , - m l , 0 ,  mE) will project onto the line 
[1, 0, 0] in both spaces. The point (100i00) has coor- 
dinates (2~, 2t~7) in the section, whereas (001001) 
has coordinates (Et~z,-Ea).  A two-dimensional lat- 
tice based on these two displacement vectors and 
integral values of ml and m2 will be a square lattice 
of exactly the type considered earlier (Fig. 2). 
Similarly, all points with indices of the form (ml,  mE, 
mE, mE, -mE,  mE) project onto the line [1, z, 0] in 
the direct space and the line [z, 1, 0] in the com- 
plementary space. The point (100000) has coordinates 
(1, 1) in the plane defined by these vectors, whereas 
(0111il)  has coordinates (x/5,-x/5), so that a lattice 
based on these vectors is a rectangular lattice whose 
unit-cell edges make 45 ° angles with the coordinate 
axes and have an axial ratio of 1" x/5. 

The general procedure for the generation of a 
diffraction pattern is then, for any direction in 
reciprocal space into which a vector in six- 
dimensional space with integral indices projects, to 
construct a two-dimensional lattice in which the coor- 
dinates are the displacements along that direction in 
the direct and complementary spaces. In real space, 
there will be families of parallel planes projecting 
onto the reciprocal-lattice vector with average spacing 
d = a/rx,  where a is a cell edge, and the projection 
points will fall within a slice of thickness t = (ry/rx)w, 
where w is now the diameter of the selection region 
in that direction. Again, the intensity is proportional 
to sin E ( ' t r t /d ) / ( ' t r t /d )2=s in  2 (Trryw)/(ryw) 2. For con- 
venience we shall follow Cahn, Shechtman & Gratias 
(1986) and transform the six-dimensional indices n~ 
to n 6 into indices related to a three-dimensional cubic 
lattice. The indices take the form h + h ' z ,  k + k ' z ,  
l + l' z, where h = n~ - n4, h ' =  n3+ n6, k =  nE-  ns, k ' =  
n~+ n4, l = n 3 - n 6 and l ' =  hE+ ns. Because the ni are 
integers, there is a selection rule that h + k', k + l' and 
l +  h' must all be even. Using these indices, we get 

2 r x = [ ( h + h ' z ) 2 + ( k + k ' 7 " ) 2 + ( l + l " r ) 2 ] / a  2 and r 2=  
[ ( h' - hz)E + ( k ' -  kr)E + ( l ' -  Iz)2]/ a E. 

It is apparent that, for there to be a strong diffrac- 
tion spot, ryw must be less than 1, and if w and a are 
comparable in magnitude, ry should then be as small 
as possible. This occurs when the pairs h and h', k 
and k' and I and l' all have the form mFn and mFn+~, 
m is as small as possible, and n is positive. Fig. 5 is 
a reproduction of a portion of an electron diffraction 
photograph taken from a rapidly solidified Mn-Al  
sample looking down a twofold axis, with indices of 
the prominent rows marked along the margin in the 
notation of Cahn, Shechtman & Gratias (1986). All 
diffraction spots in this view have indices of the  form 
h /h ' ,  k / k ' ,  0/0, and the parity selection rule requires 
that h' and k be even. Several significant features may 
be observed in this pattern. There are several promi- 
nent rows radiating from the origin at (0/0, 0/0) in 
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the lower left-hand corner. The horizontal and vertical 
radial rows have spots with increasing intensity as 
the radius increases by successive factors of  7-, in a 
pattern that strongly resembles that in Fig. 1. Two 
radial rows making angles ofarctan (1/~') and arctan 
are very different. The row at arctan ~- has two bright 
spots at radii related by a factor of  ~.3, and the outer 
bright spot is flanked by much weaker spots at radii 
related by a factor of  ~'. In the row at arctan (1/~-) 
the bright spots are missing. Fig. 6 shows the two- 
dimensional lattices corresponding to these rows. The 
lattice for the arctan ¢ row contains all points, 
whereas that for the arctan (1/~') row contains only 
those that are filled in. Both lattices are rectangular, 
with axial ratios of  I:V~,  but the one for the arc- 
tan (1/~') row has both cell edges twice as long, and 
it is centered. The lattice points corresponding to the 
four spots on the arctan ~" row are circled; the two 
closest to the horizontal axis, corresponding to high 
intensity, belong only to that row, but the others 
belong to both rows. 

It should be noted that the indices given here imply 
structural units that are larger than those implied by 
the indices assigned by Cahn, Shechtman & Gratias 
(1986) by a factor of  7 "3. This is because if a, the edge 
of  the basic rhombus in projection, and w, the 
diameter of  the selection region in the complementary 
space, are of  comparable magnitudes, the intensity 
formula predicts an extremely weak intensity for the 
reflection indexed as 1/0, 0/1,  0/0,  whereas the reflec- 
tion to which they have assigned these indices is rather 
strong. The indexing scheme of  Cahn, Shechtman & 
Gratias (1986) can be reconciled with the intensity 
formula if a much smaller selection region is chosen, 
leading to a much lower density of  the projected 
quasilattice. Calculations (Cahn & Gratias, 1986) of  
neutron intensities (Mozer, Cahn, Gratias & Shecht- 
man, 1986) on a model for the alloy indicate that this 
may indeed be appropriate. 

o ~ ,  r4D co 
ock~  ~ o c o , - ,  , - - , , - ~ , - ,  

o , - - ~  ~ L o c o  o ~ o , - - ,  
v - . l ~  

I I I I I I I I 

12/2o 
 2/19 

0 " • 1 0 / 1 6  

• O • - 8 / 1 3  

• " " " 6 / . 1 0  
• , 4 / ' 7  

4/6 
2/3 

• • • - o / o  

Fig. 5. A portion of the electron diffraction pattern of the icosahe- 
dral phase of Mn-Al along a twofold axis. Rows are indexed 
h/h', k/k', where (d*) 2 = ( a * ) 2 [ ( h  + h',r)2-1 - (k+ k"r)2] .  

Real-space structures 

Although'  there is some  controversy  (Paul ing,  1985; 
Cart, 1986; Cahn, Gratias & Shechtman, 1986; 
Mackay, 1986; Bancel, Heiney, Stephens & Goldman,  
1986) over what sort of  structure the rapidly solidified 
alloy of  aluminium and manganese actually has, and 
it is not clear that the three-dimensional tiling is the 
best way  to describe the structure, a structure can be 
constructed with tiles that produces a diffraction pat- 
tern with icosahedral symmetry. Such a structure must 
satisfy certain conditions, which we shall discuss in 
this section. 

In generating a one-dimensional non-periodic 
sequence of  line segments with lengths 1 and ~-, the 
procedure uses a two-dimensional lattice oriented at 
the irrational angle  arctan (1/~-) and projects those  
lattice points that lie withih a band of width 1 + ~- into 
the o n e - d i m e n s i o n a l  space.  This appears  to be a 
'natural' width  because  it results in two,  and only  
two, lengths of  line segment. It is also the projection 
of the unit square into the complementary space. In 
their cons iderat ion  o f  project ion from six d imens ions  
into three, Duneau & Katz (1985) appear to have 
assumed that an equal ly  'natural' cho ice  o f  the selec-  
t ion region would be the projection of  the six- 
dimensional unit hypercube, which is a triacontahe- 
dron - a figure with thirty faces,  each a rhombus  with 
an acute angle of  2 arctan ( l / r )  -- 63.4 °. Elser (1986) 
has discussed the diffraction pattern that results from 
use of  this selection region. The generalization of  his 
procedure to selection regions of  more complex 
shapes  is not at all straightforward.  As long as the 
study remains  purely  mathemat ica l ,  the use o f  the 
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Fig. 6. Two-dimensional lattice formed by projection from six 
dimensions into two orthogonal one-dimensional spaces. Points 
close to the horizontal line correspond to the reciprocal-quasi- 
lattice points for strong reflections. All points in this section 
contribute to spots along the radial line at arctan ~" from the 
horizontal in Fig. 5, but only the filled ones contribute on the 
line at arctan (I/r). 
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triacontahedron seems to be a reasonable assumption, 
but as soon as attempts are made to describe a plaus- 
ible atomic structure for a real object having these 
diffraction properties, serious problems arise that may 
be classified in two (not entirely unrelated) categories, 
density and connectivity. 

In order to propose a long-range-ordered structure 
for a quasicrystal, it is necessary to fit the required 
number of atoms into a set of blocks that are convex 
polyhedra that can be packed to fill space with the 
proper set of interatomic vectors. Mackay (1981, 
1982) has shown that such a structure can be construc- 
ted using two rhombohedra whose faces are 63.4 ° 
rhombuses, a pointed one with the acute angles meet- 
ing at the threefold axis and a flat one with the obtuse 
angles meeting at a threefold axis. [Baer (1970) 
showed a similar result in an entirely different con- 
text.] These objects have volumes in the ratio T: 1, 
and they also occur in the number ratio ~: 1 (Levine 
& Steinhardt, 1984), as in one and two dimensions. 
Because all unit vectors along coordinate axes in six 
dimensions project onto unit vectors along fivefold 
directions in three dimensions, any subset of three of 
the six coordinate axes in six dimensions will project 
into one or the other of the rhombohedra. However, 
the projection procedure generates an array of points 
that possess icosahedral symmetry over arbitrarily 
large finite regions, but it is impossible with the two 
rhombohedra alone to construct an object any larger 
than the one constructed from twenty of the acute 
rhombohedra that has this symmetry (except for one 
that consists entirely of acute rhombohedra, produc- 
ing a 20-fold twin that does not have the quasicrystal 
diffraction pattern). The use of the Duneau & Katz 
(1985) triacontahedron achieves icosahedral sym- 
metry by superposing distinct tilings related to one 
another by rotations or reflections, leading to exten- 
sive interpenetration of the two rhombohedral shapes. 

Interpenetration can be prevented by forbidding 
the use of the obtuse rhombohedron, which in turn 
can be achieved by using as the selection region a 
regular icosahedron with opposite faces separated by 
the length of the long diagonal of the acute rhombohe- 
dron. While this figure eliminates the interpenetra- 
tions, it introduces a new problem. Points that project 
into the vicinity of a vertex of the icosahedron in 
complementary space will have three or fewer neigh- 
bors in direct space, leading to dangling bonds or 
enclosed regions that are not convex. 

The interpenetration and dangling-bond problems 
can apparently be simultaneously eliminated by using 
as the selection region a reentrant figure that is the 
union of an icosahedron and a regular dodecahedron 
that together have the same vertices as the triacon- 
tahedron. If this figure is used there are no pairs of 
obtuse rhombohedra sharing faces, but two new solids 
appear in the set that is required to fill direct three- 
dimensional space. One is a rhombic dodecahedron 

(distinct from the classic cubic form commonly given 
this designation), a figure having twelve rhombus- 
shaped faces, a volume of 2~- times the volume of an 
acute rhombohedron, and symmetry m m m .  The other 
is a rhombic icosahedron, a figure with twenty faces, 
a volume 5z times the volume of the acute rhombohe- 
dron, and symmetry 5m. The dodecahedron can be 
tiled with two acute rhombohedra and two obtuse 
rhombohedra in a configuration that has symmetry 
m m 2  in two distinct ways. If the selection region is 
the triacontahedron of Duneau & Katz (1985) the 
internal quasilattice nodes required by both orienta- 
tions are generated, leading to interpenetration and 
consequently a much larger number of distinct tiles. 
Similarly, the icosahedron can be tiled with five acute 
and five obtuse rhombohedra in ten different ways, 
with the Duneau & Katz (1985) procedure generating 
the internal nodes required by all of them. 

If an atomic structure is to be constructed from a 
set of units having identical faces, atoms that cross 
the boundary between adjacent units must match, so 
that the arrangements of atoms in these faces must 
also be identical, at least to first order. The cell edge 
of f.c.c, aluminium metal is a little more than 4.0 
long, implying a volume per atom of about 16 A 3. A 
manganese atom is somewhat smaller than this. A 
real structure cannot have a density that is higher 
than that implied by these values by more than a few 
percent. The icosahedral diffraction patterns from the 
aluminium-manganese alloy, if the indexing scheme 
of Cahn, Shechtman & Gratias (1986) is used, imply 
that the edge of the basic rhombus is about 4.63/~, 
which gives the obtuse rhombohedron a volume of 
about 46/~3 and the acute one a volume of about 
75/~3. The obtuse rhombohedron therefore has room 
for three atoms and the acute one for five. Firstly, for 
the obtuse rhombohedron, three atoms can be 
accommodated by placing them either at the centers 
of the edges or at the centers of the faces. Atoms 
cannot occupy the vertices, because that accounts for 
only one atom and there is no other site where atoms 
can be placed that does not have multiplicity three 
except along the short diagonal, where there is 
insufficient room for two more atoms. There are sites 
in the quasilattice at which 20 of the acute rhom- 
bohedra meet at a point, and atoms at the centers of 
the faces would lead to a cluster of thirty aluminium 
atoms surrounding a large void, a configuration that 
seems unlikely. Atoms at the centers of the edges lead 
to a cluster of 12 atoms around a smaller void, a 
configuration that has been observed in alloy systems. 
Atoms at the centers of the edges account for three 
of the five atoms the acute rhombohedron can 
accommodate. The other two may be fitted into nine- 
coordinated holes in the interior. One or both may 
be manganese. The dodecahedral unit has room for 
16 atoms, of which eight are located on the edges of 
the surface rhombuses. The rhombic icosahedron 
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has space for 40 atoms, of which 15 are on the 
surface. 

It should be noted that it is not necessary for an 
actual' structure to have icosahedral symmetry over 
extended regions. It is only necessary that its set of 
interatomic vectors have that symmetry. The icosahe- 
dral diffraction pattern could therefore be produced 
by a packing of the two rhombohedral shapes alone. 
However, because there is insufficient space for a 
manganese atom in the obtuse rhombohedron, there 
would be only one type of local environment for a 
manganese atom, contrary to observations by M6ss- 
bauer spectroscopy (Swartzendruber, Shechtman, 
Bendersky & Cahn, 1985) and EXAFS (Stem, Ma & 
Bouldin, 1985) that there must be at least two distinct 
transition-metal sites. Although it is possible that 
required differences can result from more distant 
neighbors owing to the different types of packing, it 
would appear that a satisfactory structure for the 
aluminium-manganese and other quasicrystalline 
alloys is likely to contain units based on one or both 
of the larger solids. In particular, it may be possible 
to fill space with the acute rhombohedron and the 
rhombic icosahedron, which between them possess 
all the necessary convex vertices. 

The indexing scheme assigned in this paper implies 
an edge for the basic rhombus that is larger by a 
factor of r 3, or about 19.6 A. Unit cells of that size 
are not unusual in the Mn-AI system, and this cell 
volume allows ample room for multiple formula units, 
making the problem of density adjustment much 
easier. Moreover, the quasilattice generated by the 
projection process has the property that if the selec- 
tion region is contracted by a factor of r 3 the resultant 
quasilattice is identical to the original one except that 
it is expanded by a factor of 7 "3. Therefore a large 
structure can be constructed from the smaller blocks. 
There is no absolute criterion for choosing the size 
of a fundamental unit. It is chosen here on the basis 
of the transition from low diffracted intensity to high 
diffracted intensity. 

Regardless of the size of the selection region, the 
formula given in this paper provides a means of 
computing the lattice part of the Fourier transform. 
If the selection region has icosahedral symmetry and 
is convex, the diameter in different directions cannot 
vary greatly, so that for practical purposes it can 
probably be adequately approximated by a sphere 
whose radius could be a parameter in a refinement 

procedure. On the other hand, if the region is not 
convex there will be differences in the intensities of 
reflections at the same reciprocal-lattice radii in 
different directions. In cases where reflections at the 
same radius along different lines in the electron 
diffraction pattern have different intensities, there- 
fore, these differences may be ascribed either to the 
effects of different quasilattice weighting or to the 
effects of atomic arrangement. 

The author gratefully acknowledges interesting and 
helpful discussions with N. F. Berk, J. W. Cahn, H. 
A. Fowler, D. Gratias and B. Mozer. He also wishes 
to thank C. B. Shoemaker and D. P. Shoemaker for 
a critical reading of an earlier draft of the manuscript 
and many constructive comments. 

References 
BAER, S. (1970). Zome Primer. Albuquerque: Zomeworks Corp. 
BANCEL, P. A., HEINEY, P. A., STEPHENS, P. W. & GOLDMAN, 

A. J. (1986). Nature (London), 319, 104. 
BENDERSKY, L. (1985). Phys. Rev. Lett. 55, 1461-1463. 
BRUIJN, N. G. DE (1981). Proc. K. Ned. Akad. Wet. Set. A, 43, 

39-52, 53-66. 
CAHN, J. W. & GRATIAS, D. (1986) J. Phys. (Paris) Colloq. 47, 

C3-415-424. 
CAHN, J. W., GRATIAS, D. & SHECHTMAN, D. (1986). Nature 

(London), 319, 102-103. 
CAHN, J. W., SHECHTMAN, D. & GRATIAS, D. (1986). J. Mater 

Res. 1, 13-26. 
CARR, M. J. (1986). J. Appl. Phys. 59, 1063-1067. 
DUNEAU, M. & KATZ, A. (1985). Phys. Rev. Lett. 54, 2688-2691. 
ELSER, V. (1986). Acta Cryst. A42, 36-43. 
GARDNER, M. (1977). Sci. Am. 236, 110-121. 
KALUG1N, P. A., KITAYEV, A. Yu. & LEVITOV, L. S. (1985). J. 

Phys. (Paris) Lett. 46, L601-L607. 
KRAMER, P. & NERI, R. (1984). Acta Cryst. A40, 580-587. 
LEVXNE, D. & STEINHARDT, P. J. (1984). Phys. Rev. Lett. 53, 

2477-2480. 
MACKAY, A. L. (1976). Phys. Bull. 495-497. 
MACKAY, A. L. (1981). Soy. Phys. Crystallogr. 26, 517-522. 
MACKAY, A. L. (1982). Physica (Utrecht), II4A, 609-613. 
MACKAY, A. L. (1986). Nature (London), 319, 103-104. 
MOZER, B., CAHN, J. W., GRATIAS, D. & SHECHTMAN, D. (1986). 

J. Phys. (Paris) Colloq. 47, C3-350-360. 
PAUL1NG, L. (1985). Nature (London), 317, 512-514. 
PENROSE, R. (1974). Bull. Inst. Math. Appl. 10, 266-271. 
SHECHTMAN, D., BLECH, I., GRATIAS, D. & CAHN, J. W. (1984). 

Phys. Rev. Lett. 53, 1951-1953. 
STERN, E. A., MA, Y. & BOULDIN, C. E. (1985). Phys. Rev. Lett. 

55, 2883-2886. 
SWARTZENDRUBER, L., SHECHTMAN, D., BENDERSKY, L. & 

CArtN, J. W. (1985). Phys. Rev. B, 32, 1383-1385. 
ZIA, R. K. P. & DALLAS, W. J. (1985). J. Phys. A, 18, L341- 

L345. 


